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1. Introduction
The development of vertical-cavity surface-emitting lasers (VCSELs)
[1] has enabled III-V semiconductor technology to be applied to cer-
tain optical information processing architectures. This development,
coupled with the realization of optoelectronic integration, has made
feasible the development of so-called "smart pixels," wherein a com-
bination of optical and electronic devices can perform certain logical
and computational functions with purely optical inputs and outputs
[2]. There are a number of advantages of III-V semiconductor multi-
layer structures for these applications, not the least of which is that a
large number of devices can be packaged into a very small volume.
Consequently a large amount of information can be processed
quickly and simultaneously, and therefore the theoretical advantage
of optical processing (i.e., massive parallelism) can be realized in an
actual system. A further advantage of III-V semiconductor struc-
tures is that optical sources, detectors, modulators, and switches can
be fabricated from the same semiconductors and can eventually be
integrated on the same chip. However, a number of physical and
technological obstacles need to be overcome before smart-pixel tech-
nology can be made practical, including the complexity of fabrica-
tion for the VCSELs reported to date and the difficulties with precise
control of layer thicknesses and compositions. Solutions to these
problems are critical for obtaining robust optimal devices with a
high degree of uniformity over 2D arrays.

2. Fabrication Process

In this report we demonstrate a simple fabrication process for large-
diameter InGaAs/AlGaAs VCSELs that involves only a single wet-
chemical-etching step and that produces lasers with low threshold
current densities and favorable optical characteristics. The structure
(see fig- 1(a)), grown by molecular-beam epitaxy (MBE), consists of
two Bragg mirrors (21 periods of (X/4 GaAs)/(X/4 AlAs) for the
n-doped lower mirror and 26 periods of (X/4 GaAs)/(X/4
Al 0 .7Ga 0 .3As) for the p-doped upper mirror), with a single
In0.2Ga0.8As quantum well in the center of a one-wavelength-thick
Al0.45Ga0.55As optical cavity. Figures 1(b) and 1(c) show details of
the n- and p-doped layers, respectively. In designing the mirrors, we
have provided digital grading of the alloy composition [3,4] and an
increase in doping at the interfaces [5] where the optical field has a
zero to reduce the series resistance of the VCSELs. Before growing
the structure, we grew a standard edge-emitting laser with the same
Ino.2Gao. 8As strained single-quantum-well active region as the



Figure 1. Epitaxial (a)-
structure of VCSEL: IV/6 GaAs
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VCSEL. This waveguide laser showed an extremely low transpar-
ency current density of 70 A/ cm 2, with an emission wavelength of
about 1000 nm.*

Figure 2(a) shows the measured reflectance spectra at points near
the center (solid line) and edge (dashed line) of the wafer; compari-
son of these two spectra shows that the layer thicknesses in the
MBE-grown structure are uniform to considerably better than a per-

* cent over the area of the 2-in. wafer. For comparison, in fig. 2(b) we
show the results of a computer simulation of the reflectance, where

Figure 2. Reflectance (a) 1.2-

spectra of VCSEL
structure: (a) Experi- 1.o-
mental reflectance
spectra for areas near
the center (solid line) 0.8
and edge (dashedline) of the 2-in. •

wafer, (b) calculated 0.6

reflectance spectrum. g 04Cr 0.4-

0.2-

0.0 i i 4 -
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C)

0)6
(D
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0.0
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*The edge-emitting laser has Alo.2Gao 8 As surrounding the quantum well rather than Alo.45Gao.55 As as in
the VCSEL; thus its weln is shallower, and the emission wavelength longer, than the VCSEL.
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we use the refractive-index interpolation of Adachi [6] to model the
optical properties of the GaAs and AlxGal,.As layers and where we
have neglected the Ino.2Gao.8 As well.

A piece of the MBE-grown wafer was polished on the back, and
n-type (Au / Sn / Au) contact pads were deposited on the corners of
the piece and annealed, thus leaving most of the back transparent
for light output. Then p-type (Au/Cr/Au) contacts in the form of
circular disks ranging from 25 to 150 •tm in diameter were evapo-
rated onto the upper surface of the wafer through a mask. These
disks also served as masks in a one-step, self-aligned wet chemical
etching process (8:1:1 H 20 2:H2SO 4 :H20) that removed about 4 gm
of material (i.e., to slightly below the Ino.2Gao.8As well). Examina-
tion of the resulting mesas using a scanning electron microscope
showed that they were undercut, as expected for an isotropic chemi-
cal etch. The wafer piece was mounted in a metal package (attached
with solder to the rear corner contacts) with a large hole drilled in
the back to permit light output, and several devices of each size were
wire bonded. Current-voltage characteristics showed that 75-, 100-,
and 150-pm-diam devices consistently showed favorable character-
istics, including series resistances below 50 CQ; in contrast, wire
bonds to the 25- and 50-pm-diam devices failed to adhere to the
contacts.

3. Test Results
The VCSELs were tested using a voltage source producing pulses
typically 0.1 Vs in duration at a 10-kHz repetition rate (i.e., a 0.1-per-
cent duty cycle) connected to one of the VCSELs in series with a
50-9 resistor and a 0.5-9 test resistor; the voltage drop across the
0.5-9 resistor determined the current through the VCSEL. For most
of the power-current (L-I) characterization and for far-field measure-
ments, a silicon photodiode was used as the detector. For spectral
characterization (and for L-I characterization at a single wave-
length), the output from the VCSEL was focussed onto the entrance
slit of a 0.75-m monochromator (100-pm entrance and exit slits), dis-
persed through the monochromator, and imaged onto a liquid-nitro-
gen-cooled InAs photodetector. Figure 3(a) shows the L-I character-
istics for several of the 100-[tm-diam VCSELs and for one of the 150-
pm-diam VCSELs. All the devices tested show sharp thresholds. In
figure 3(b) we show the threshold current density Jth (i.e., the thresh-
old current divided by the area) plotted as a function of the VCSEL
diameter. Jth decreases with decreasing device diameter, possibly in-
dicating the influence of parasitic transverse modes on the device
operation. (The number of available transverse modes decreases

8



with decreasing device size.) Undercutting by the etch effectively
decreases the device diameter, but this decrease is insufficient to ac-
count for the dependence of Jth on diameter. Jth is below 800 A / cm2

for the 75-Lm-diam VCSELs; we expect it to decrease even further
with decreasing diameter. Testing this hypothesis will require a bet-
ter wire bonding procedure or possibly using the more complex dry-
etching or proton-implantation techniques to fabricate smaller
VCSELs. Nevertheless, the results obtained here are comparable to
the best obtained in similar structures [7].

Figure 3. (a) Light- (a) 2000.o-

output/current (L-I)
characteristics of four
100-pm-diamVCSELs 1807.o-
and one 150-in-diam
VCSEL; (b) threshold
current density Ith
plotted as a function : 12o0.o-
of VCSEL diameter. •2
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Typical spectra for 100-m-diam VCSELs are shown in figure 4. In
figure 4(a) we show a spectrum recorded under typical testing con-
ditions--i.e., with 100-ps pulses. Under these conditions we are un-
able to resolve more than one mode, and the laser output shows a
definite polarization (which is not necessarily coincident with one of
the crystallographic axes). In addition, the far-field pattern consists
of a single Gaussian-like mode with a full width at half maximum of
less than 4%. In contrast, when the laser is driven with longer pulses
(typically greater than 0.5-ts pulses; see fig. 4(b)), more than one
mode can often be resolved, with some of the mode polarizations
rotated 900 relative to the others. Examination of the laser output
with a boxcar integrator indicates that the laser is switching from
one mode to the other (and from one polarization to the other) as
time progresses. As the pulse duration increases, the output power
decreases and eventually goes to zero. We propose that these phe-
nomena result from heating of the VCSEL active region and would
not occur with properly heat-sunk devices.

4. Conclusions
We have shown that a simple fabrication process involving only a
single wet-chemical-etch step can produce VCSELs with favorable
operating characteristics, including threshold current densities as
low as 800 A/cm2. At present we are fabricating smaller VCSEL
structures from our MBE-grown structure using both ion etching

Figure 4. VCSEL 0.06-
spectra for (a) laser
operating with a short
(1 lAs) pulse, showing 0.05-
an apparent single-
mode operation and -.
(b) laser operating a 0.04- (a)
with a long (> 0.5 Vs)
pulse, showing more m
than one mode. S 0.03-

0

2-
q(b

0.01-

0.00 -
977.0 977.5 975.0 978.5 979.0 979.5 980.0

Wavelength (nm)
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and proton implantation to define devices. We also intend to exam-
ine a second Ino.2Gao.8As VCSEL structure, fabricated as described
here, which has a substantial offset between wavelengths corre-
sponding to the gain maximum and the cavity resonance. This struc-
ture should be more tolerant of heating effects [81 and may exhibit
improved characteristics at high operating currents and longer pulse
widths.
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